Molecular and genetic analysis of forage legumes (red clover, different species of lupine, and bird's-foot trefoil) was conducted using 31 combinations of SRAP markers. The informative primers were selected for each plant species to assess the genetic diversity. Parameters of interspecies and inter-varietal DNA polymorphism were estimated: effective number of alleles, Nei’s genetic diversity index and Shannon’s index. Based on the genotyping data the dendrograms of genetic similarity were constructed using UPGMA method and PCoA-analysis. As a rule the samples were combined accordingly their origin. The values of PIC (polymorphism information content) indicator were high for every studied species with variations from 0.76 in red clover to 0.81 in lupine. The results obtained confirmed the SRAP-marking method effectiveness for the genetic structure analysis of legume grasses different species, as well as for inter-varietal genetic variability evaluation. The data can be used for legume crops breeding programs enhancing.
forage legumes, molecular and genetic analysis, SRAP markers, genetic polymorphism, cluster analysis
1. Solov'eva Yu.A., Solov'ev A.V. Bobovye — osnovnoy istochnik obespechennosti zhivotnyh rastitel'nym kormom // Sostoyanie sredy obitaniya i fauna ohotnich'ih zhivotnyh Rossii i sopredel'nyh territoriy: Materialy III Mezhdunarodnoy, VIII Vserossiyskoy Nauchno-prakticheskoy konferencii, Moskva, 18–19 marta 2024 g. – M., 2024. – S. 122–127.
2. Li G., Quiros C.F. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theoretical and Applied Genetics. 2001. Vol. 103. P. 455–461.
3. Poczai P., Varga I., Laos M., Cseh A., Bell N., Valkonen J. P., & Hyvönen J. Advances in plant gene-targeted and functional markers: a review. Plant Methods. 2013. Vol. 9. P. 1–32.
4. Hale A.L., Farnham M.W., Nzaramba M.N., & Kimbeng C.A. Heterosis for horticultural traits in broccoli. Theoretical and Applied Genetics. 2007. Vol. 115. P. 351–360.
5. Liu L.W., Gong Y.Q., Huang H., & Zhu X.W. Novel molecular marker systems-SRAP and TRAP and their application. Yi Chuan = Hereditas. 2004. Vol. 26, No. 5. P. 777–781.
6. Wei B., Cao L., Li S., Huang D., Cai G., & Lu X. Population structure of Euodia rutaecarpa in China revealed by amplified fragment length polymorphism (AFLP) and sequence-related amplified polymorphism (SRAP). Journal of Medicinal Plants Research. 2011. Vol. 5, No. 30. P. 6628–6635.
7. Effektivnyy sposob vydeleniya DNK dlya PCR-analiza iz «balk-obrazcov» prorostkov / I.A. Klimenko, A.A. Antonov, V.A. Dushkin, A.O. Shamustakimova, Yu.M. Mavlyutov // Adaptivnoe kormoproizvodstvo. – 2021. – № 3. – S. 29–48.
8. Yeh F.C. POPGENE (version 1.3. 1): Microsoft window-based freeware for population genetic analysis [Electronic resource]. Available at: http://www.ualberta.ca/~fyeh/. – 1999.
9. Aneja B., Yadav N.R., Chawla V., & Yadav R.C. Sequence-related amplified polymorphism (SRAP) molecular marker system and its applications in crop improvement. Molecular Breeding. 2012. Vol. 30. P. 1635–1648.
10. Shamustakimova A.O., Mavlyutov Yu.M., Klimenko I.A. Primenenie SRAP-markerov dlya DNK-identifikacii rossiyskih sortov lyucerny // Genetika. – 2021. – T. 57, № 5. – S. 536–543.
11. Talebi M., Hajiahmadi Z., Rahimmalek M. Genetic diversity and population structure of four Iranian alfalfa populations revealed by sequence-related amplified polymorphism (SRAP) markers. Journal of Crop Science and Biotechnology. 2011. Vol. 14. P. 173–178.
12. Castonguay Y., Cloutier J., Bertrand A., Michaud R., & Laberge S. SRAP polymorphisms associated with superior freezing tolerance in alfalfa (Medicago sativa spp. sativa). Theoretical and Applied Genetics. 2010. Vol. 120. P. 1611–1619.