DOI: https://doi.org/10.33814/MAK-2022-27-75-65-72

ВЛИЯНИЕ ЭФФЕКТИВНЫХ СРЕДСТВ ЗАЩИТЫ НА УРОЖАЙНОСТЬ СЕМЯН ЛЮПИНА БЕЛОГО

Л. И. Пимохова, кандидат сельскохозяйственных наук **Г. Л. Яговенко,** доктор сельскохозяйственных наук

Ж. В. Царапнева Н. И. Хараборкина

ВНИИ люпина — филиал ФНЦ «ВИК им. В.Р. Вильямса» п. Мичуринский, Брянская область, Россия, lupin mail@mail.ru

Люпин белый является источником качественного растительного белка для обеспечения сбалансированного питания животных и птицы. Урожайность семян современных сортов люпина достигает 3-5 m/га, зеленой массы -70-120 m/га. Heсмотря на ценные качества, в производстве культура используется недостаточно. Одной из причин является поражение болезнями и вредителями. Самой опасной и вредоносной болезнью является антракноз. Как следствие, люпин остро нуждается в высокоэффективных средствах защиты. В полевых условиях установлена высокая эффективность (97–96 %) протравителей (Витарос — 2,0 л/т, Максим XL — 2,0 л/m, Дивидент Стар — 0,5 л/m, Селест Топ — 0,7 л/m, Иншурперформ — 0,7 л/m) в подавлении семенной инфекции антракноза и других болезней. Для защиты посевов люпина высокую эффективность (88–93 %) показали фунгициды Амистар Экстра (0,5 л/га), Спирит (0,7 л/га), Ракурс (0,4 л/га), Колосаль Про (0,4 л/га), Бампер Супер (1,5 л/га) и Зантара (1,5 л/га). Против вредителей всходов выявлена высокая эффективность (76,2–96 %) протравителей инсектицидного действия Табу (0,4 л/m) и Селест Топ (0,7 л/m). Для защиты посевов люпина от тли и плодожорки наиболее эффективными (91–96 %) были препараты БИ-58 Новый (0,7 л/га) и Борей Нео (0,2 л/га). Применение указанных средств защиты люпина белого позволяет успешно контролировать развитие и вредоносность вредных организмов в посевах и предотвратить значительные потери урожая семян.

Ключевые слова: люпин белый, болезни, вредители, средства защиты, эффективность, урожайность.

Современное промышленное животноводство РФ испытывает недостаток в растительных кормах и концентратах с высоким содержанием протеина. В этом аспекте определенный интерес представляет люпин белый (*Lupinus albus* L.). В производственных условиях семенная продуктивность современных сортов достигает 3–5 т/га, зеленой массы — 70–120 т/га. В его семенах содержится от 37 до 42 % белка и 10–12 % жира. Переваримость белка люпина составляет 92 %, не уступая белку куриного яйца. Люпин занимает лидирующее положение по содержанию ценных незаменимых аминокислот — лизина, метионина, цистина, триптофана [1; 2; 3].

Однако потенциал этой культуры используется в производстве недостаточно. Одна из главных причин — недостаточная защищенность посевов от многих болезней: фузариоза (Fusarium spp.), ризоктониоза (Rhizoctonia solani), белой гнили (Sclerotinia libertiana), но, в первую очередь, антракноза — Colletotrichum lupini. В настоящее время данное заболевание является самым опасным в агроценозах люпина во всех странах, где возделывается эта культура. При среднем уровне развития болезни урожай зеленой массы и семян снижается на 30–50 %, а в эпифитотийные годы снижение достигает 80–100 %. Основным источником инфекции антракноза служат семена. Благоприятствуют развитию болезни теплые и влажные условия вегетации в мае — июле. От больных всходов гриб распространяется по посеву и поражает молодые растущие части растений [4; 5].

На протяжении всего вегетационного периода значительный вред посевам люпина наносят вредители. Ежегодно посевы люпина повреждаются личинкой ростковой мухи (Chortophila florilega), жуками и личинками клубеньковых долгоносиков (Sitonagriseus, Chromoderus fasciatus, Sitonacrinitus), тлей (Aphis fabae, Acyrthosiphon pisi). Совокупные потери урожая от вредного воздействия фитофагов могут достигать 50 %, в отдельных случаях посевы люпина погибают [4].

Распространение данных болезней и вредителей в посевах люпина белого не позволяет реализовать потенциал его продуктивности. Поэтому эта культура остро нуждается в высокоэффективных средствах защиты. На сегодняшний день ассортимент разрешенных на люпине химических средств защиты крайне ограничен и малоэффективен против антракноза. К тому же многие сельхозтоваропроизводители игнорируют обеззараживание посевного материала люпина белого даже теми протравителями, которые разрешены к применению на культуре, а посевы начинают обрабатывать химическими средствами при массовом развитии заболеваний или вредных насекомых, что в конечном итоге приводит к значительным потерям урожая семян.

Сократить инфицированность семян антракнозом можно протравливанием, а также термическим способом (прогревание семян). При зараженности посевного материала люпина белого до 5 % замачивание семян в горячей воде 50 °C в течение 30 минут снизило поражение растений антракнозом перед уборкой до 1,4 % против 13 % на контроле, с протравливанием семян фунгицидом Ровраль обеспечило урожайность 3,36 т/га при урожайности на контроле 2,98 т/га [6].

Во ВНИИ люпина, являющегося в настоящее время филиалом ФНЦ «ВИК им. В. Р. Вильямса», разработан энергосберегающий способ термического обеззараживания семян, при котором семена подвергают тепловой обработке при влажности теплоносителя 30–40 % в течение

двух часов, а температура обработки устанавливается, исходя из исходной влажности семян. Полевые испытания термически обработанных семян люпина показали высокую эффективность обеззараживания их против антракноза. Так, в фазу бутонизации люпина белого количество пораженных антракнозом растений в среднем составило 13,3 % при 80,7 % в контроле. В итоге, если урожайность семян на опытном посеве в среднем составила 1,35 т/га, то на контрольном она была 0,20 т/га [7]. Сравнительное изучение термически обработанных семян люпина и протравленных Витавакс 200 ФФ и Дивидент Стар показали высокий эффект против антракноза и положительное влияние на полевую всхожесть семян. В посеве с термообработкой поражение антракнозом растений и бобов составило соответственно 11,3 и 8,6 % при 46,9 и 41,3 % в контроле. Поражение данной болезнью растений в посевах с протравителем Витавакс 200 ФФ и Дивидент Стар составило соответственно 12,6 и 17,8 %, а бобов — 7,0 и 8,2 %. Однако полученный урожай семян в варианте с термообработкой был ниже на 0,12 и 0,22 т/га, чем в вариантах с протравителями. Снижение урожая в варианте с термообработкой происходило за счет гибели большего количества растений от поражения болезнями (фузариоз, ризоктониоз). Поэтому после термической обработки семян люпина необходимо проводить протравливание посевного материала [8].

Многие исследователи люпиносеющих стран сообщают, что лучшие результаты против антракноза получаются от применения фунгицидов, в состав которых входят несколько действующих веществ или от смеси разных фунгицидов [9; 10; 11; 12; 13].

Протравители, разрешенные ранее на территории РФ для обеззараживания семян люпина и других бобовых культур от комплекса болезней, не являются высокоэффективными против семенной инфекции антракноза (ТМТД, 80%-ный с.п.* — 3-4 кг/т; Фундазол, 50%-ный с.п. — 3–4 кг/т; Фентиурам, 50%-ный с.п. — 4 кг/т; Ровраль, 50%-ный с.п. — 1,5—2 кг/т).

Нашими исследованиями выявлен ряд протравителей, которые обладают высокой активностью в подавлении внутренней и внешней семенной инфекции антракноза и комплекса других болезней. В состав данных протравителей входят действующие вещества различного механизма действия на многие болезни семян, вызываемые грибной и бактериальной микрофлорой, в том числе и на возбудителя антракноза. К таким протравителям относятся следующие препараты: Витавакс 200 ФФ (тирам + карбоксин: $200 + 200 \, г/л$) в дозе 2,0 л/га, Витарос (тирам + карбоксин: $198 + 198 \, \text{г/л}$) — $2.0 \, \text{л/га}$, Дивидент Стар (дифеноконазол + ци-

^{*}с.п. — смачивающийся порошок.

проконазол: 30 + 6,3 г/л) — 0,5 л/т, Колфуго Дуплет (карбендазим + карбоксин: 200 + 170 г/л) — 3,0 л/т, Максим XL (флудиоксонил + мефеноксам: 25 + 10 г/л) — 2 л/т, Селест Топ (тиаметоксам + дифеноконазол + флудиоксонил: 262,5 + 25 г/л) — 0,7 л/т, Иншурперформ (тритиконазол + пираклостробин: 80 + 40 г/л) в дозе 0,7 л/т [4].

Изучение протравителей Витарос в дозе 2,0 л/т и Максим XL в дозе 2,0 л/т для обработки семян люпина белого показало их высокую активность в уничтожении поверхностной и внутренней семенной инфекции антракноза. Эффективность их против антракноза составила 96 и 97 % соответственно. В среднем за годы исследований протравливание семян препаратами Витарос (2 л/т) и Максим XL (2 л/т) сократило поражение растений в период бутонизации – начала цветения с 66,7 % в контроле до 24,1 и 21,7 % соответственно, а по бобам — с 78,9 % в контроле до 31,9 и 28,9 % соответственно. При применении данных протравителей был получен статистически достоверный ($HCP_{05} = 0.59$) сохраненный урожай семян. Его величина по отношению к контролю в данных вариантах соответственно составил 1,05 и 1,26 т/га. Окупаемость затрат протравливания соответственно составила 7,11 и 7,48 рублей. При этом данные протравители достоверно ($HCP_{05} = 5,95$) повышали всхожесть семян от 7,3 до 9,6 % и не оказывали отрицательного действия на рост растений [4].

В связи с тем, что возбудитель антракноза может развиваться только на молодой растущей растительной ткани при наличии капельной влаги, развитие болезни происходит в течение всего активного роста растений люпина. При установлении дождливой и теплой погоды в период вегетации люпина (май — июль) инфекция антракноза массово распространяется даже от немногих источников по всему посеву, при этом один прием протравливания семян не спасает от значительных потерь урожая.

В литературе сообщается, что применение фунгицидов с действующими веществами хлороталонил, манкоцеб, азоксистробин и тебуконазол снижают распространение болезни на люпине [12; 13; 14; 15; 16; 17].

Наши исследования показали, что для ограничения развития антракноза в посевах люпина необходимы системные фунгициды, не оказывающие токсического действия на защищаемые растения. Одним из таких фунгицидов зарубежной фирмы-производителя средств защиты растений «Syngenta» является Амистар Экстра. Высокую активность в подавлении развития антракноза фунгицид Амистар Экстра (0,5 л/га) показал и при защите посевов люпина белого. За годы исследований его биологическая эффективность составляла от 81 до 93 %. Проведение трех обработок фунгицидом посевов люпина белого (в начале стеблева-

ния, в конце бутонизации и в период формирования бобов) обеспечило получение урожая семян за годы исследований от 2,13 до 3,69 т/га, при 0,17 и 1,80 т/га в контроле. Окупаемость затрат составила от 5,22 до 7,90 рублей на каждый вложенный рубль. Амистар Экстра не оказывал токсического действия на растения люпина белого [3].

Высокую эффективность против антракноза и других болезней люпина белого показали фунгициды российских фирм-производителей средств защиты: Спирит (эпоксиконазол + азоксистробин: $160 + 240 \, г/л$) — 0,7 л/га, Ракурс (ципроконазол + эпоксиконазол: $160 + 240 \, г/л$) — 0,4 л/га, Колосаль Про (пропиконазол + тебуконазол: $300 + 200 \, г/л$) — 0,4 л/га, Бампер Супер (прохлораз + пропиконазол: $400 + 90 \, г/л$) — 1,5 л/га и Зантара (тебуконазол + биксафен: $166 + 50 \, г/л$) — 1,5 л/га [3]. На люпине белом биологическая эффективность против антракноза фунгицида Спирит составила 91 %. В фазе блестящего боба поражение антракнозом бобов составило 9,5 % при 77,6 % в контроле.

Спирит также снижал поражение люпина белого фузариозом, серой и белой гнилью и оказывал стимулирующее действие на рост растений. Урожай семян составил 3,51 т/га при 1,12 т/га в контроле (величина сохраненного урожая — 2,39 т/га). Окупаемость затрат на применение Спирита составила 5,33 рубля на каждый вложенный рубль. Биологическая эффективность Ракурса (0,4 л/га) составила 88 %. Поражение антракнозом бобов люпина белого в этом варианте снизилось в 7,5 раз. Лучший результат Ракурс показал в подавлении развития на бобах люпина серой и белой гнили, что положительно повлияло на величину урожая семян. Сохраненный урожай семян в этом варианте составил 21,3 ц/га, а окупаемость затрат — 5,78 рубля. Колосаль Про (0,4 л/га) снизил развитие антракноза на 81 %. Поражение бобов было в 3,2 раза ниже, чем в контроле. Снизилось и поражение растений фузариозом, а бобов серой и белой гнилью. Урожай семян составил 2,73 т/га (на 1,61 т/га больше, чем в контроле). Окупаемость затрат была наибольшей и составила 6,91 рубля.

Обработка посевов люпина белого фунгицидом Зантара в дозе 1,5 л/га уменьшило поражение бобов с 83,8 % в контроле до 7,3 %. Урожай семян составил 3,24 т/га, что на 1,58 т/га больше, чем в контроле. Эффективность фунгицида в среднем за годы исследований составила 91,3 %. Окупаемость прибавки урожая составила 3,27 рубля на каждый рубль затрат [17].

Для получения максимального эффекта фунгицидов при массовом развитии болезни очень важно проводить обработки в точно определенные сроки. Первая обработка (профилактическая) проводится в фазу полных всходов или начала стеблевания (одна—две пары настоящих листьев) и существенно подавляет развитие семенной инфекции антракно-

за, сдерживая ее дальнейшее развитие. Вторая обработка проводится спустя две недели после первой (фаза бутонизации) и обеспечивает защиту генеративных органов. Третья — через две недели после второй (фаза «конец цветения – начало бобообразования») — сводит до минимума поражение формирующихся бобов и инфицированность семян. Вторая и третья обработки проводятся, если первая половина лета отличается обильным выпадением осадков и в посевах люпина обнаружены единичные очаги поражения растений антракнозом. Первую обработку посевов люпина лучше проводить фунгицидами, в состав которых входит одно из действующих веществ стробилуриновой группы (азоксистробин и др.) — Амистар Экстра, Спирит, поскольку они не оказывают угнетающего действия на растения. Вторую и третью обработки — любым другим фунгицидом, описанным выше.

Применение указанных выше фунгицидов для защиты посевов люпина позволяет успешно контролировать развитие и вредоносность антракноза и многих других болезней и предотвратить значительные потери урожая семян. Но из этих фунгицидов в настоящее время только Колосаль Про в дозе 0,4 л/га включен в «Справочник пестицидов и агрохимикатов, разрешенных к применению на территории Российской Федерации» для защиты посевов люпина от антракноза и других болезней.

В последние годы в посевах люпина наблюдается увеличение вредоносности вредителей всходов культуры (личинок ростковой мухи, жуков и личинок клубенькового долгоносика, проволочника). Защита посевов люпина от вредителей должна начинаться с предпосевной обработки посевного материала протравителями, в состав которых входит инсектицид или комплексный протравитель, обладающий инсектицидным и фунгицидным действием.

Наши исследования показали высокую эффективность против вредителей всходов инсектицидного протравителя Табу (имидоклаприд, 500 г/л) при норме расхода 0,4 л/т и комплексного протравителя с инсектицидными и фунгицидными свойствами Селест Топ (тиаметоксам + дифеноконазол + флудиоксонил: 262,5 + 25 + 25 г/л) — 0,7 л/т. Эффективность Селест Топ против ростковой мухи и клубенькового долгоносика составила соответственно 95 и 96 %. Эффективность его против тли в фазу бутонизации составила 81,8 %. Эффективность протравителя Табу была ниже и составила: против ростковой мухи и клубенькового долгоносика 80,6 и 76,2 % соответственно, а против тли — 68 % [4].

Для защиты посевов люпина от тли и плодожорки наиболее эффективным был системный препарат БИ-58 Новый (диметоат — 400 г/л) — 0,7 л/га. Его биологическая эффективность составила соответственно 93,1 и 91,3 %. Потери урожая сократились на 14,6 % [18].

В то же время в опытах ВНИИ люпина на люпине белом выявлена высокая эффективность инсектицида Борей Нео в дозе 0,2 л/га (альфациперметрин + имидаклоприд + клотианидин) против тли и плодожорки. Эффективность инсектицида против тли составила 93,0 %. При этом достоверная прибавка урожайности семян составила 9,2 ц/га. Против плодожорки эффективность Борея Нео была выше и составила 95,8 %. Прибавка урожая семян составила 4,7 ц/га [19].

Применение данных средств защиты люпина белого от болезней и вредителей позволяет значительно снизить потери урожая семян и вредоносность вредных организмов в посевах и обеспечить высокое качество получаемой семенной продукции.

Литература

- 1. Люпин: селекция, возделывание, использование: монография / В. М. Косолапов, Г. Л. Яговенко, М. И. Лукашевич [и др.]. – Брянск: ГУП «Брянское областное полиграфическое объединение», 2020. – 304 с.
- 2. Урожайность и кормовая ценность сортов и перспективных образцов люпина белого селекции ВНИИ люпина / М. И. Лукашевич, М. В. Захарова, Т. В. Свириденко [и др.] // Новые сорта люпина, технология их выращивания и переработки, адаптация в системы земледелия и животноводство : сб. тр. Междунар. науч.-практ. конф., посвящ. 30-летию со дня основания ВНИИ люпина. Брянск, 2017. С. 59–66.
- 3. Инновационный опыт производства кормового люпина / И. П. Такунов, Т. Н. Слесарева, М. И. Лукашевич [и др.]. М.: Росинформагротех, 2012. 80 с.
- 4. Болезни и вредители люпина: система и средства защиты : монография / Л. И. Пимохова, Г.Л. Яговенко. Брянск : Читай-город, 2020. 88 с.
- 5. Котова В. В., Кунгурцева О. В. Антракноз сельскохозяйственных растений. Санкт-Петербург: ВИЗР, 2014. 132 с. (Приложение к журналу «Вестник защиты растений», № 11).
- 6. Römer P. Chemische und nicht-chemische Bekampfungsmöglichkeiten der Samenburtigen Antraknose bei Lupinen // 51 Arbeitstagung 2000 der Vereinigung österreichischer Pflanzenzuchter. Gumpenstein, 21–23 November, 2000.
- 7. Деркачев И. П., Пимохова Л. И. Термическое обеззараживание семян люпина от антракноза: науч.-практ. рекомендации. Брянск: Читай город, 2010. 46 с.
- 8. Пимохова Л. И., Царапнева Ж. В. Эффективные средства защиты люпина от антракноза // Кормопроизводство. 2012. С. 17–19.
- 9. Иванюк В. Г., Евсиков Д. О. Антракноз люпина в Белоруссии // Защита растений и карантин. -2001 № 8. C. 16.
- 10. Свитингем М. Производство люпина в Западной Австралии и борьба с вредителями и болезнями // Состояние и перспективы развития люпиносеяния в России в XXI веке: тез. докл. Междунар. науч.-практ. конф. (ВНИИ люпина, 17–19 июля 2001 г.). Брянск, 2001. С. 15–18.
- 11. Хайдель В. Оценка длительных полевых опытов по различным мерам защиты растений при возделывании люпина на севере Германии / Мекленбург Западная Померания. Proceedings of the 12th Intern. Lupin Conf. Fremantle, Western Australia, 14–18 September, 2008.

- 12. Изучение вопроса: ответ отрасли на появление антракноза в западной Австралии / Γ. Ши [и др.]. Proceedings of the 12th Intern. Lupin Conf. Fremantle, Western Australia, 14–18 September, 2008.
- 13. Корнейчук Н. С. Грибные болезни люпинов: монография. Киев, 2010. 374 с.
- 14. Евсиков Д. О. Антракноз люпина и разработка мер борьбы с ним в условиях Беларуси : автореф. дис. ... канд. с.-х. наук: спец. 06.01.11 «Защита растений». Минская область, Прилуки, 2002. 23 с.
- 15. Фунгицидная защита люпина от антракноза / И. Г. Бруй, Л. И. Белявская, Г. В. Будевич, О. В. Ключкова // Земледелие и защита растений. 2013. № 3. С. 56—58.
- 16. Гаджиева Г. И., Гутковская Н. С. Методические указания по определению зараженности семян люпина антракнозом. Минск, 2013. 19 с.
- 17. Ращупкин А. Люпин: как не остаться на бобах? // Белорусское сельское хозяйство. 2013. N 12. C. 48.
- 18. Фунгицид Зантара против основных болезней люпина / Л. И. Пимохова, Ж. В. Царапнева, Н. И. Хараборкина // Многофункциональное адаптивное кормопроизводство : сб. науч. тр., вып. 21 (69) / ФНЦ «ВИК им. В. Р. Вильямса». М. : ООО «Угрешская типография», 2019. С. 45–49. DOI 10.33814/MAK-2019-21-69-45-49.
- 19. Пимохова Л. И, Слесарева Т. Н, Царапнева Ж. В. Инсектицидный эффект против доминантных вредителей в люпиновом посеве // Зернобобовые и крупяные культуры. 2015. № 3 (13). С. 71–74.
- 20. Яговенко Г. Л., Слесарева Т. Н., Пимохова Л. И. Оценка биологической эффективности инсектицида Борей Нео в посевах белого люпина // Агроэкологические аспекты устойчивого развития АПК: материалы 16 Междунар. науч. практ. конф. / ФГБОУ ВО «Брянский ГАУ». Брянск: Брянский ГАУ, 2019. С. 354–358.

IMPACT OF EFFICIENT PROTECTIVE CHEMICALS ON SEEDS YIELD OF WHITE LUPIN

L. I. Pimokhova, G. L. Yagovenko, Zh. V. Tsarapneva, N. I. Kharaborkina

The white lupin is a source for qualitative plant protein to provide balanced nutrition for animals and poultry. Seed and green mass yield of modern lupin varieties can be 3-5 t/ha and 70-120 t/ha respectively. In spite of valuable qualities the production crop use is insufficient. One of the reasons is infection by diseases and pests. Anthracnose is the main dangerous and harmfulness disease. As a result lupin is in dire need for high effective protective chemicals. High effectiveness (97–96%) of seed dressers Vitaros – 2.0 l/t, Maxim XL - 2.0 l/t, Divident Star - 0.5 l/t, Selest Top - 0.7 l/t, Inshurperform - 0.7 l/t was revealed against seeds' infection with anthracnose and other diseases under field conditions. The fungicides Amistar Extra – 0.5 l/ha, Spirit – 0.7 l/ha, Rakurs – 0.4 l/ha, Kolosal Pro - 0.4 l/ha, Bamper Super - 1.5 l/ha and Zantara - 1.5 l/ha are of high effectiveness (88–93%) for protection of lupin crops. The insecticides Tabu – 0.4 l/t and Selest Top – 07 l/t were high effective (76.2–96.0%) against seedlings pests. The most effective dressers (91–96%) against aphids and weevils were the chemicals BI-58 New – 0.7 l/ha and Borey Neo - 0.2 l/ha. The use of the mentioned chemicals for white lupin protection allows manage development and harmfulness level of harmful organisms in crops and prevent significant grain yield losses.

Keywords: white lupin, diseases, pests, protective chemicals, effectiveness, yield.